当前位置: 华文头条 > 推荐

外国人念不对中国运动员的名字?科学的解释来了

2024-08-13推荐

巴黎奥运会正如火如荼地进行着,不少细心的朋友们在观看比赛的同时也关注到了一个细节:巴黎奥运会官网运动员介绍页上线了一个有趣的新功能,各国运动员录制了自己名字的发音。观众点击网页上的语音按钮就可以听见快速和慢速两个版本。

运动员马龙的个人介绍页面

不少老外在念中国名字时会有奇怪的口音,比如

马龙:吗~喽~

樊振东:胖~成~桶~

王楚钦:王~亲~亲~

中国人念的外语也有时会带有口音。那么怎样才能准确地完成发音呢?在今天我们的这篇文章就来谈谈 发音 的故事!

首先我们来看人为什么会发出声音。中学物理知识告诉我们,声音是由 物体振动 产生的,我们发出的声音就是呼气时 来自肺部的气流带动声带振动 产生的。

利用来自肺的空气发出的声音我们称之为肺部气流音。声音从声带产生之后在 喉腔和口腔共同组成的声道 中传播,声道对声音进行 调整筛选 ,最终形成我们听到的具有特定意义的声音。

我们说话的时候就是通过改变声道的形状来改变我们发出的声音。 实用技巧来啦!

国际音标

如果有一套参考标准告诉我们每个音应该怎么发,那么学习发音就会变得容易很多。我们每个人学认字的时候都要学习 拼音 ,刚学英语的时候老师也会教我们拼读 音标 。不管是拼音还是音标,都是用符号来标记人的发音。但是问题是,每个音标的发音需要师生之间 口口相传 来学习。此外,随着年龄的增长,你会发现,给汉字注音的 符号系统不只有一种 ,给英语注音的所谓「国际音标」也 五花八门

如果你没有老师在身边,或者不认识音标,或者学过的音标和词典上的音标不一样怎么办?

事实上,人们早就制定了 适用于所有语言的音标体系 ,称为 国际音标 (International Phonetic Alphabet, IPA),这套符号体系根据发音时人的 舌位、唇型等因素记录发音 ,每个音用唯一的符号标记,理论上可以囊括人类所有可能发出的音。下面让我们一览国际音标的风采吧。

我们先来看元音,下面这张图就是 舌面元音舌位图

国际音标中的舌面元音舌位图

这张图什么意思呢。你可以看到一个四边形,四边形的边上和内部标有符号, 每个标有 符号的位置代表的是舌头的位置 。我们可以认为上腭是不动的,且舌头是自然放松地贴在下腭上的,所以这里舌头的位置也就反映了嘴巴张开的大小。

比如,你念 「啊」 这个字,嘴巴张得很大,你发的音就在图上右下角 [a] 附近,而如果你念 「一」 这个字,那么嘴巴就很小,你发的音就在图上右上角 [i] 处。

当然除了张嘴大小之外, 舌头抬起的位置靠前和靠后 也被刻画在了这张图里,主要有最上面一行写的 「前、央、后」 三个位置。比如,当你发 「鱼」 这个字的元音时,舌头的位置要比发 「乌」 这个字的元音时位置靠前。

圆唇与不圆唇 是另一个影响发音的因素。成对出现在同一个位置的元音,左边的表示不圆唇,右边的表示圆唇。比如 「一」和「鱼」就分别对应圆唇和不圆唇 。当你念「一」时,你会发现你的嘴唇是咧开的,如果不动其它任何地方,只是把嘴唇收成一个圆形,你会发现你竟然念出了「鱼」字,对应[y]符号。

元音在发音时气流几乎不受任何阻碍,而辅音在发音时气流要受到种种不同的阻碍 。国际音标根据阻碍的形式和阻碍的位置制定的辅音的符号。下面这张表中每一列表示特定的调音部位,每一行表示特定的调音方式。

国际音标中的辅音

我们举几个常见的例子,第一行 爆发音 就是一股气流 冲破阻塞 产生的声音,汉语拼音中的p, t, k就是爆发音;第五行 擦音 就是气流通过 狭窄空间摩擦 产生的声音,如汉语拼音中的f, s, h等。 拍音 是指什么呢,就是舌头与调音部位接触一下立刻移开,而 近音 呢,舌头只是靠近调音部位。 边音 则是指舌尖翘起形成声道的阻塞, 但舌的两边还有气流流通。

其它的发音读者们可以根据表中的发音部分的阻碍方式来尝试一下。

国际音标不只这些,还规定了一些常见的发音组合以及对发音的修饰等,这里就不展开讲啦。

要想掌握外语的发音技巧,我们还需要理解 发音的原理

弦振动

中学物理告诉我们,声音有响度、音调、音色等特征。响度与声音的功率有关, 音调反映了声音的振动频率 ,而音色是人们区分不同物体的声音的重要依据。

从波动的观点来看,人们日常接触到的声音往往是由 大量单一频率的声音混合而成 的,将声音分解成 各种频率成分的叠加 的过程,通常被称为 傅里叶变换 。在声音的成分较为简单的情况下,声音的音调反映的是声波频率最低的成分的频率。音色反映的是声波的频谱信息(各频率成分混合时的权重),可以理解为人们对声波的所有频率成分的整体感知。

人们主观感受到的不同字的读音的区别,其实本质上是 音调和音色 的区别,反映了声波的各频率成分,携带了产生声波的物体的信息,也就是声道的形状。要想理解发音的原理,让我们从最简单的情况, 弦的横振动 开始。

考虑一个长度为L柔软的、轻质的均匀弦的自由振动,自由振动的意思是弦在振动的过程中不受外力,人们拨弦的动作使弦开始振动,相当于提供初始条件,之后人不再向弦施加外力,弦进行自由振动。弦在 水平方向紧绷,两端固定 ,如图所示。

两端固定 的条件我们称之为 边界条件 。由于两端固定,弦可能的振动模式就受到了限制,只有 弦长等于半波长的整数倍 时,这种振动模式才是被允许的,我们将波长最长(频率最低)的模式称为基频,而其它模式的频率都是基频的整数倍,我们称为高次谐波,或者叫泛音。

而如果是这样的振动则不符合两端固定的条件,因而是 不允许 的。

边界条件要求弦的两端位移为0,这张图中弦的端点处位移非零,因此是不允许的

两端固定的弦振动告诉我们, 在一定的边界条件下,只有特定的振动模式才是允许的 ,振动模式由系统的参数(比如两端固定的弦的长度)决定。

声道中的振动模式

我们从弦振动模型中获得了关于振动模式的经验,下面我们将它应用到声道中去。我们以元音为例,建立下面的数学模型。在这个模型中,我们 将声道视作一个截面恒定、管壁刚性的管

这是人的嘴巴及周围结构的侧面图

如图所示, 朝前的方向设为z轴正方向,与之垂直的平面为xy平面 。正如一根两端固定的弦一样,声道壁在xy平面内给出了限制。在z方向,声音产生于声带,经过唇齿向外传播,声带和唇齿形成了这根管的边界。

我们把柔软的声道壁和声带看成 刚性边界 。这是因为肌肉和气体比起来要结实得多,肌肉的刚性是对声道中的气体介质而言的。刚性边界要求 气体在声道壁上的宏观速度为0 ,经过数学推导可以证明,这个边界条件 等价于气体的压强在声道壁上沿声道法向的导数为0 。而 嘴巴向外开口的地方则是柔性壁,也就是开放边界,气压必须永远是0

事实上,我们通常发出的声音并没有这么复杂。声道中声音的模式可以分解为 xy平面内的分量和z方向的分量的乘积 。在xy平面内,我们只需要考虑最低频的振荡,也就是没有振荡, 气压在xy平面内是常数 。而z方向发生的事情类似于上面我们提到的两端固定的弦振动。

不过 z方向 的两端分别是柔性壁和刚性壁,所以我们要求 腔长是半波长的半奇数倍 ,即

腔长是半波长的半奇数倍

满足上面这个关系的频率我们称为「 共振峰 」,代表这个频率的波可以和声道发生共振。仅有一个频率是不够的,我们需要更高频的共振峰来确定声音更精细的特征。通常情况下,我们需要前三个共振峰来确定一个音。

如果你觉得公式太复杂看不懂,我们来看点具体的,一个成年男性的声道长度大概为18cm,代入最低频率的振动模式n=0,得到,将声速c=340m/s代入公式

这个频率大约就是 中央元音[ə] 的频率。

你或许不认识这个音标符号,但是,你一定会发这个音:你只需要完全放松口腔,发出类似于「 」的音就对了,这个状态下,你的声道也就最接近一个直通的管。

那么其它的发音是怎么来的呢?我们以元音为例。我们在发元音的时候声道比较通畅,气流在流出的过程中几乎不受到任何阻碍,所以将声道视作一个管的近似是有效的。但是, 不同的元音有不同的舌位和唇型 ,为了更好地刻画这些形状,人们常用 双联管 来近似描述人的声道。

双联管由 前后两管 拼接而成, 前后两管的长度和直径是可调参数 ,不同的参数对应不同的发音。

双联管示意图

双联管不同于单管,它的 共振条件 比较复杂,设l₁ 是双联管前段的长度; l₂ 是后段的长度; A₁ 是前段的横截面积; A₂ 是后段的横截面积,那么共振峰对应的频率满足

下面这张图绘制了 几个常见元音的双联管参数和前四个共振峰

几个常见元音的双联管模型和前四个共振峰

我们可以从图中看到,舌位较低的元音[a]和[æ],是前管粗, 后管细,[y] 和 [i] 有与 [a] 相反的双管结构,前管细,后管粗。由此得到对立的共振结构模型:[a] 的第一共振峰高,第二共振峰低;[y] 和 [i] 的第一共振峰低,第二共振峰高。圆唇的[y]前部的较长,而不圆唇的[i]前部缩短,这对 F2 和 F3 进行了必要的调节。

总结

至此,我们不仅熟悉了 国际音标 ,还一起探讨了 声音背后的科学原理 。现在,每当你开口说话,你都会意识到,你不仅仅是在说出文字,你是在利用舌头、嘴唇、甚至鼻、咽 构建谐振腔 激发 声道内空气的特定 振动模式 ,那些声音的波动,不仅仅是空气的振动,更是你大脑和声带协同作用的成果。

最后,别忘了,语言是一种交流的工具,也是一种 艺术 它应该被享受,被欣赏 。无论你是在攻克一个难发音,还是在享受朗读的乐趣,都要记得,语言学习是一场旅行, 记得欣赏沿途的风景

如果你为自己的英语发音困扰,如果你正在学习一门新的语言,希望本文可以给你一点启发。愿你的每一次语言实践都充满乐趣,愿你的每一次对话都充满自信。继续探索,继续学习,继续享受语言带来的无限可能。

转载自:中科院物理所